Traffic Modeling(2)




2.2

Modeling Traffic as a Stochastic Process

= A good (descriptive) model of network traffic is a
stochastic process

" We are generally talking about number of bytes (or
packets or flows) per unit time

= A (discrete time) stochastic process is a collection of
random variables {X;, i1=1, 2, .. ]}



2.3

Distribution Function

= Given a random variable X, we can fully characterize
it by its probability distribution function (pdf):

" je f(x) = Pi(x)

= Estimated using a histogram




Histograms and CDFs

= A histogram is often a poor estimate of the pdf f(x)
because it involves binning the data

= The CDF F(x) = P[X; < x] will have a point for
each distinct data value; can be much more accurate

= Statistical data binning is a way to group numbers of
more or less continuous values into a smaller
number of "bins"
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2.5

Histograms and CDFs

= A histogram is often a poor estimate of the pdf f(x)
because it involves binning the data

= The CDF F(x) = P[X; < x] will have a point for
each distinct data value; can be much more accurate
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2.6

Modeling a Distribution

* We can form a compact summary of a pdf f(x) if we
find that it is well described by a standard
distribution — e.g.,
=  Gaussian (Normal)
= Exponential

=  Poisson

= Pareto



2.7

Modeling a Distribution

= Statistical methods exist for asking whether a
dataset is well described by a particular distribution

= Estimating the relevant parameters
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Distributional Tails

2.8

= A particularly important part of a distribution is the
(upper) talil

= P|IX > x]

* large values dominate statistics and performance

= “Shape” of tail critically important




2.9

Light Tails, Heavy Tails

“

= Light tails— Exponential or faster decline

f1(x)

* Heavy tails—Slower than any exponential

f2(x)

fi(x) = 2 exp(-2(x-1))

fa(x) = x2




History: Heavy Tails Arrive & Today’s traffic

= pre-1985: Scattered measurements note high
variability in computer systems workloads

= |985 — 1992: Detailed measurements note “long”
distributional tails

= Fjle sizes

" Process lifetimes
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History: Heavy Tails Arrive & Today’s traffic

= 1993 — 1998: Attention focuses specifically on
(approximately) polynomial tail shape:“heavy tails”

* Post-1998: Heavy tails used in standard models
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Heavy-tailed

*

= A distribution is heavy-tailed if the asymptotic shape
of the distribution follows a power-law so that

PI X>x]|=zx%asx > 0,0<a<?2
* The parameter a describes the heaviness of the tail
distribution so that as & gets smaller the distribution
becomes more heavy-tailed
= Larger portion of the probability mass may be

present in the tail of the distribution
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The effect of in a heavy-tailed distribution

A

" The asymptotic (i.e. tail) shape of the distribution is
hyperbolic and converges slower than the
exponential distribution
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A Fundamental Shift in Viewpoint

* Traditional modeling methods have focused on
distributions with “light” tails

* Tails that decline exponentially fast (or faster)

= Arbitrarily large observations are vanishingly rare
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A Fundamental Shift in Viewpoint

* Heavy tailed models behave quite differently

= Arbitrarily large observations have non-negligible
probability

= Large observations, although rare, can dominate a
system’s performance characteristics
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Use of Heavy-tailed

ﬂ

= Sizes of data objects in computer systems
* Files stored on Web servers

= Data objects/flow lengths traveling through the
Internet

* Files stored in general-purpose Unix file systems

= |/O traces of file system, disk, and tape activity
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Use of Heavy-tailed

ﬂ

* Process/Job lifetimes

* Node degree in certain graphs
" [nter-domain and router structure of the Internet
= Connectivity of WWW pages

= Zipf’'s Law
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Zipf’s law

= Zipf’s Law is a statistical distribution in certain data
sets, such as words in a linguistic corpus, in which
the frequencies of certain words are inversely
proportional to their ranks.
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Caution of Heavz-tails

* Workload metrics following heavy tailed distributions
are extremely variable

* For example, for heavy tails:
= When a < 2, distribution has infinite variance
= When a < 1, distribution has infinite mean
* |n practice, empirical moments are slow to converge

or non-convergent
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Pareto distribution
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Pareto distribution
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Pareto distribution

“

* The parameters a and k are the shape and location
parameters, respectively.

* The Pareto distribution is applied to model self-
similar arrival in packet traffic.

= Other important characteristics of the model are

that the Pareto distribution has infinite variance,
when a < 2 and achieves infinite mean, when a < 1.
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Pareto distribution
S

= [f X is a random variable with a Pareto distribution,
then the probability that X is greater than some
number X, i.e. the survival function (also called tail

function), is given by

( k
F)=Plx>x={F"  x=k
\1, x <k

where k is the (necessarily positive) minimum possible
value of X,and « is a positive parameter.
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Pareto distribution

ﬂ

* The Pareto distribution is
characterized by a scale
parameter k and a shape
parameter «, which is
known as the tail index.

= CDF of Pareto distribution

a

k
Fp(X) =1- ;
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Pareto distribution

ﬂ

K\ 4 :
= P(X >x) = (;) forall x > k where a is a

positive parameter and k is the minimum possible
value of x

* The probability distribution and the density functions
are represented as:

FG) = [C fde=1- (%)

where a, k > O, X = a, f(x) — akax—a—l
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Weibull distribution

2.26

The Weibull distributed
process is heavy-tailed and
can model the fixed rate in
ON period and ON/OFF
period lengths, when
producing self-similar

traffic by multiplexing
ON/OFF sources.
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Weibull distribution

2.27

= Both parameters a and b

affect the tail distribution

More sensitive to the value
of b

CDF of Weibull distribution

Fy(x) = 1— e~ ®/@"

0.5 B

0.45 —-a=0>

04 —a-3=10
2.0.35 1t
T 03 —a=l
T0.25 Exponential
é‘_O.Z .\
?0.15
?0.1
§0.05
a0

1 2 3 4 5 6 7 8 9 10
X
(a)

0.7
2 —-—p=05
0.6
= —a-b=1.0
| 0.5
§ ——Dpb=15
¥ 0.4 Exponential
X0.3
e
A~ 0.2

0.1

0

(b)
The effect of (a) a; and (b) b in Weibull distribution



Weibull distribution

* The distribution function in this case is given by:

xb
F)=1-e@, x>0

and the density function of the Weibull distribution is
given as:

@ = ba-bxt-1e-@) x>0

where parameters a > 0 and b > 0 are the scale and
location parameters respectively.
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Weibull distribution

= The Weibull distribution is close to a normal
distribution.

* For a < 1 the density function of the distribution is L
shaped and for values of a > 1, it is bell shaped.
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Meaning of heavy-tailed distribution

2.30

" Usually, a heavy-tailed distribution describes traffic
processes such as packet inter-arrival times and burst
length

= Heavy tailed distributions tend to have many outliers
with very high values. It means that the arrival rate is
higher than the service rate.



Characterizing a traffic process

* Marginals and Autocorrelation

* Characterizing a traffic process in terms of these
two properties gives you a good approximate
understanding of the process, without involving a
lot of work, requiring complicated models, or
requiring estimation of too many parameters.

= Recent analysis on traffic measurements on packet-

data networks such as LAN and WAN, show heavy-
tailed, self-similar, fractal, and LRD characteristics.
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How Does Self-Similarity Arise?

* Flows — Autocorrelation — Self-similarity

= Distribution of flow lengths has power law tail
— Autocorrelation declines like a power law
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2.32



Self-Similarity

g

* Power Tailed ON/OFF sources —Self-Similarity
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Self-similarity indicator
EEE————

= |f the aggregate traffic exhibits time correlation over
a wide rage of timescales can be characterized by a
single parameter called Hurst parameter (H)

* Hurst parameter

= Measure of the degree of self-similarity of the
aggregate traffic stream

* If H gets closer to |, the degree of self-
similarity increases
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Self-similarity indicator

a

"= Three methods that can measure Hurst
parameter

" Variance vs Time
= R/S plot
" Whittle Estimator
= Exactly self-similar (H = 1)
= Asymptotically self-similar (0.5 < H < 1)
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Evidence of Self-similarity

ﬁ

2.36

* A recent measurement study has shown that
aggregate Ethernet LAN traffic is self-similar

= A statistical property that is very different from the
traditional Poisson-based models

= |n 1993, a group at Bellcore recorded a large series
of highly detailed Ethernet data. By chance, a
mathematician specializing in self-similarity was
available, and a complete analysis demonstrated the
phenomenon beyond any reasonable doubt



Evidence of Self-similarity

ﬁ

* The proof is best illustrated graphically. The original
study provided the best available graphical
demonstration of the problem

= Self-Similarity refers to distributions that exhibit the
same characteristics at all scales.

= This is clearly not the case for Poisson traffic.
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Evidence of Self-similarity

2.38

As bin sizes increase,
Poisson traffic will
“smooth,’ eventually
reaching a flat line at
the distribution mean.

Truly self-similar traffic
will not; it will continue
to show bursts at all
scales.
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2.39

Evidence of Self-similarity

On the left, we have a real
network trace appearing
at different time scales.

On the right, we have a
pure Poisson process
generating synthetic traffic
at the same time scales.
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Evidence of Self-similarity

A

2.40

* The packet counts are renormalized to an appropriate
scale as the time scale changes. The difference is
clearest at the largest time scales.

= Both Poisson processes and self-similar processes are
bursty at the correct time scales. However, unlike

Poisson processes, self-similar process bursts have no
natural length.

= Bursts are evident from the |10ms scale all the way to
the 100 seconds scale.



Meaning of Self-similarity

* |f you plot the number of packets observed per time
interval as a function of time, then the plot looks
“the same” regardless of what interval size you
choose

* No matter what time scale you use to examine the
data, you see similar patterns

E.g., |0 msec, 100 msec, | sec, 10 sec,...
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Meaning of Self-similarity

| ) Burstiness exists across many time scales

11) No natural length of a burst

I11) Traffic does not necessarily get “smoother” when you

aggregate it (unlike Poisson traffic)
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Several equivalent fashions of Self-similarity

* Slowly decaying variance
* Long range dependence
* Non-degenerate autocorrelations

= Hurst effect
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Slowly decaying variance:Variance-Time Plot

ﬁ

* The variance of the sample decreases more slowly
than the reciprocal of the sample size

* For most processes, the variance of a sample
diminishes quite rapidly as the sample size is
increased, and stabilizes soon

* For self-similar processes, the variance decreases
very slowly, even when the sample size grows quite
large
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Variance-Time Plot
E

* Plots the variance of the sample versus the sample size that
is changed to the log value m, on a log-log plot:

Var(x(™) = g2m=F
logVar(X™)) = logg?m™F = —Blogm + log 62
So, —p is slope.

* The “variance-time plot” is a well known technique for
testing the behavior of the variance with respect to the time
scale.
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Variance-Time Plot

" For most processes, the Vzi}'iance of sample on a logarithmic scale
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