
Traffic Modeling(2)



2.2

Modeling Traffic as a Stochastic Process

 A good (descriptive) model of network traffic is a 

stochastic process

 We are generally talking about number of bytes (or 

packets or flows) per unit time

 A (discrete time) stochastic process is a collection of

random variables {Xi, i=1, 2, . . .}



2.3

Distribution Function

 Given a random variable X, we can fully characterize 

it by its probability distribution function (pdf):

 i.e. f(x) = Px x

 Estimated using a histogram



2.4

Histograms and CDFs

 A histogram is often a poor estimate of the pdf 𝐟(𝐱) 

because it involves binning the data

 The CDF 𝐅 𝐱 = 𝐏 𝐗𝐢 ≤ 𝐱 will have a point for 

each distinct data value; can be much more accurate

 Statistical data binning is a way to group numbers of 

more or less continuous values into a smaller 

number of "bins"



2.5

Histograms and CDFs

 A histogram is often a poor estimate of the pdf 𝐟(𝐱) 

because it involves binning the data

 The CDF 𝐅 𝐱 = 𝐏 𝐗𝐢 ≤ 𝐱 will have a point for 

each distinct data value; can be much more accurate



2.6

Modeling a Distribution

 We can form a compact summary of a pdf 𝐟(𝐱) if we 

find that it is well described by a standard 

distribution – e.g.,

 Gaussian (Normal)

 Exponential

 Poisson

 Pareto



2.7

Modeling a Distribution

 Statistical methods exist for asking whether a 

dataset is well described by a particular distribution

 Estimating the relevant parameters



2.8

Distributional Tails

 A particularly important part of a distribution is the 

(upper) tail

 𝐏[𝐗 > 𝐱]

 Large values dominate statistics and performance

 “Shape” of tail critically important



2.9

Light Tails, Heavy Tails

 Light tails– Exponential or faster decline

𝒇𝟏 𝒙

 Heavy tails–Slower than any exponential

𝒇𝟐 𝒙



2.10

History: Heavy Tails Arrive & Today’s traffic

 pre-1985: Scattered measurements note high 

variability in computer systems workloads

 1985 – 1992: Detailed measurements note “long” 

distributional tails

 File sizes

 Process lifetimes



2.11

History: Heavy Tails Arrive & Today’s traffic

 1993 – 1998: Attention focuses specifically on 

(approximately) polynomial tail shape: “heavy tails”

 Post-1998: Heavy tails used in standard models



2.12

Heavy-tailed

 A distribution is heavy-tailed if the asymptotic shape 

of the distribution follows a power-law so that

𝑷 𝑿 > 𝒙 ≅ 𝒙−𝜶 𝐚𝐬 𝒙 ⟶ ∞,𝟎 < 𝜶 < 𝟐

 The parameter 𝜶 describes the heaviness of the tail 

distribution so that as 𝜶 gets smaller the distribution 

becomes more heavy-tailed

 Larger portion of the probability mass may be 

present in the tail of the distribution



2.13

The effect of in a heavy-tailed distribution

 The asymptotic (i.e. tail) shape of the distribution is 

hyperbolic and converges slower than the 

exponential distribution



2.14

A Fundamental Shift in Viewpoint

 Traditional modeling methods have focused on 

distributions with “light” tails

 Tails that decline exponentially fast (or faster)

 Arbitrarily large observations are vanishingly rare



2.15

A Fundamental Shift in Viewpoint

 Heavy tailed models behave quite differently

 Arbitrarily large observations have non-negligible 

probability

 Large observations, although rare, can dominate a 

system’s performance characteristics



2.16

Use of Heavy-tailed

 Sizes of data objects in computer systems

 Files stored on Web servers

 Data objects/flow lengths traveling through the 

Internet

 Files stored in general-purpose Unix file systems

 I/O traces of file system, disk, and tape activity



2.17

Use of Heavy-tailed

 Process/Job lifetimes

 Node degree in certain graphs

 Inter-domain and router structure of the Internet

 Connectivity of WWW pages

 Zipf’s Law



2.18

Zipf’s law

 Zipf’s Law is a statistical distribution in certain data 

sets, such as words in a linguistic corpus, in which 

the frequencies of certain words are inversely 

proportional to their ranks. 



2.19

Caution of Heavy-tails

 Workload metrics following heavy tailed distributions 

are extremely variable

 For example, for heavy tails:

 When 𝛼 ≤ 2, distribution has infinite variance

 When 𝛼 ≤ 1, distribution has infinite mean

 In practice, empirical moments are slow to converge 

or non-convergent



2.20

Pareto distribution

 The Pareto distribution 

process produces 

independent and identically 

distributed(IID) inter-arrival 

times

 The simplest heavy-tailed 

distribution 

 𝑘 is the minimum value of 𝑥
(simply the scaling factor) 

and doesn’t affect the tail 

distribution
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2.21

Pareto distribution

 𝑥 is a random variable: a 

mathematical function that 

maps outcomes of random 

experiments to numbers

 𝛼 is the heaviness of the 

tail distribution
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2.22

Pareto distribution

 The parameters 𝛼 and 𝑘 are the shape and location 

parameters, respectively. 

 The Pareto distribution is applied to model self-

similar arrival in packet traffic. 

 Other important characteristics of the model are 

that the Pareto distribution has infinite variance, 

when 𝛼 ≤ 2 and achieves infinite mean, when 𝛼 ≤ 1.



2.23

Pareto distribution

 If 𝑋 is a random variable with a Pareto distribution, 

then the probability that 𝑋 is greater than some 

number 𝑋, i.e. the survival function (also called tail 

function), is given by

ത𝐹 𝑥 = 𝑃 𝑋 > 𝑥 = ቐ(
𝑘

𝑥
)𝛼 , 𝑥 ≥ 𝑘

1 , 𝑥 < 𝑘

where 𝑘 is the (necessarily positive) minimum possible 

value of 𝑋, and 𝛼 is a positive parameter. 



2.24

Pareto distribution

 The Pareto distribution is 

characterized by a scale 

parameter 𝑘 and a shape 

parameter 𝛼, which is 

known as the tail index.

 CDF of Pareto distribution

𝐹𝑝 𝑥 = 1 −
𝑘

𝑥

𝛼

Pareto probability density functions for various 𝜶 with 𝒌 = 𝟏.

Pareto cumulative distribution functions for various 𝜶 with 𝒌 = 𝟏.



2.25

Pareto distribution

 𝑃 𝑋 > 𝑥 =
𝑘

𝑥

𝛼
for all 𝑥 ≥ 𝑘 where 𝛼 is a 

positive parameter and 𝑘 is the minimum possible 

value of 𝑥

 The probability distribution and the density functions 

are represented as:

𝐹 𝑥 = 𝑥׬
∞
𝑓 𝑥 𝑑𝑥 = 1 −

𝑘

𝑥

𝛼

where 𝛼, 𝑘 ≥ 0 , 𝑥 ≥ 𝛼 , 𝑓 𝑥 = 𝛼𝑘𝛼𝑥−𝛼−1



2.26

Weibull distribution

 The Weibull distributed 

process is heavy-tailed and 

can model the fixed rate in 

ON period and ON/OFF 

period lengths, when 

producing self-similar 

traffic by multiplexing 

ON/OFF sources. 
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2.27

Weibull distribution

 Both parameters 𝑎 and 𝑏
affect the tail distribution

 More sensitive to the value 

of 𝑏

 CDF of Weibull distribution

𝐹𝑤 𝑥 = 1 − 𝑒−(𝑥/𝑎)
𝑏
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2.28

Weibull distribution

 The distribution function in this case is given by:

𝐹𝑤 𝑥 = 1 − 𝑒
−

𝑥
𝑎

𝑏

, 𝑥 ≥ 0

and the density function of the Weibull distribution is 

given as:

𝑓 𝑡 = 𝑏𝑎−𝑏𝑥𝑏−1𝑒
−

𝑥
𝑎

𝑏

, 𝑥 ≥ 0

where parameters 𝑎 > 0 and 𝑏 > 0 are the scale and 

location parameters respectively.



2.29

Weibull distribution

 The Weibull distribution is close to a normal 

distribution. 

 For 𝑎 ≤ 1 the density function of the distribution is L 

shaped and for values of 𝑎 > 1 , it is bell shaped.



2.30

Meaning of heavy-tailed distribution

 Usually, a heavy-tailed distribution describes traffic 

processes such as packet inter-arrival times and burst 

length

 Heavy tailed distributions tend to have many outliers 

with very high values. It means that the arrival rate is 

higher than the service rate.



2.31

Characterizing a traffic process 

 Marginals and Autocorrelation

 Characterizing a traffic process in terms of these 

two properties gives you a good approximate 

understanding of the process, without involving a 

lot of work, requiring complicated models, or 

requiring estimation of too many parameters.

 Recent analysis on traffic measurements on packet-

data networks such as LAN and WAN, show heavy-

tailed, self-similar, fractal, and LRD characteristics.



2.32

How Does Self-Similarity Arise?

 Flows →Autocorrelation → Self-similarity 

 Distribution of flow lengths has power law tail 

→Autocorrelation declines like a power law



2.33

Self-Similarity

 Power Tailed ON/OFF sources →Self-Similarity

log(𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

time(1 unit = 500ms)



2.34

Self-similarity indicator

 If the aggregate traffic exhibits time correlation over 

a wide rage of timescales can be characterized by a 

single parameter called Hurst parameter (𝑯)

 Hurst parameter

 Measure of the degree of self-similarity of the 

aggregate traffic stream

 If H gets closer to 1, the degree of self-

similarity increases



2.35

Self-similarity indicator

 Three methods that can measure Hurst 

parameter

 Variance vs Time

 R/S plot

 Whittle Estimator

 Exactly self-similar (𝐻 = 1)

 Asymptotically self-similar (0.5 < 𝐻 < 1)



2.36

Evidence of Self-similarity

 A recent measurement study has shown that 

aggregate Ethernet LAN traffic is self-similar  

 A statistical property that is very different from the 

traditional Poisson-based models

 In 1993, a group at Bellcore recorded a large series 

of highly detailed Ethernet data. By chance, a 

mathematician specializing in self-similarity was 

available, and a complete analysis demonstrated the 

phenomenon beyond any reasonable doubt



2.37

Evidence of Self-similarity

 The proof is best illustrated graphically. The original 

study provided the best available graphical 

demonstration of the problem

 Self-Similarity refers to distributions that exhibit the 

same characteristics at all scales.

 This is clearly not the case for Poisson traffic. 



2.38

Evidence of Self-similarity

 As bin sizes increase, 

Poisson traffic will 

“smooth,” eventually 

reaching a flat line at 

the distribution mean. 

 Truly self-similar traffic 

will not; it will continue 

to show bursts at all 

scales.



2.39

Evidence of Self-similarity

 On the left, we have a real 

network trace appearing 

at different time scales.

 On the right, we have a 

pure Poisson process 

generating synthetic traffic 

at the same time scales. 



2.40

Evidence of Self-similarity

 The packet counts are renormalized to an appropriate 

scale as the time scale changes. The difference is 

clearest at the largest time scales.

 Both Poisson processes and self-similar processes are 

bursty at the correct time scales. However, unlike 

Poisson processes, self-similar process bursts have no 

natural length. 

 Bursts are evident from the 10ms scale all the way to 

the 100 seconds scale.



2.41

Meaning of Self-similarity

 If you plot the number of packets observed per time 

interval as a function of time, then the plot looks 

‘‘the same’’ regardless of what interval size you 

choose 

 No matter what time scale you use to examine the 

data, you see similar patterns

E.g., 10 msec, 100 msec, 1 sec, 10 sec,...



2.42

Meaning of Self-similarity

ⅰ) Burstiness exists across many time scales

ⅱ) No natural length of a burst

ⅲ) Traffic does not necessarily get ‘‘smoother” when you 

aggregate it (unlike Poisson traffic)



2.43

Several equivalent fashions of Self-similarity 

 Slowly decaying variance

 Long range dependence

 Non-degenerate autocorrelations

 Hurst effect



2.44

Slowly decaying variance: Variance-Time Plot

 The variance of the sample decreases more slowly 

than the reciprocal of the sample size

 For most processes, the variance of a sample 

diminishes quite rapidly as the sample size is 

increased, and stabilizes soon

 For self-similar processes, the variance decreases 

very slowly, even when the sample size grows quite 

large



2.45

Variance-Time Plot

 Plots the variance of the sample versus the sample size that 

is changed to the log value 𝑚, on a log-log plot: 

𝑉𝑎𝑟 𝑋 𝑚 = 𝜎2𝑚−𝛽

log 𝑉𝑎𝑟 𝑋 𝑚 = log 𝜎2𝑚−𝛽 = −βlog𝑚 + log 𝜎2

So, −𝛽 is slope. 

 The ‘‘variance-time plot” is a well known technique for 

testing the behavior of the variance with respect to the time 

scale.



2.46

Variance-Time Plot

 For most processes, the 

result is a straight line 

with slope -1

 For self-similar, the line is 

much flatter

H = 1 −
𝛽

2
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