Traffic Modeling(3)




Correlation

2.2

= Correlation is a statistical measure of the relationship
between two different time series

| ) Positive correlation
: both behave similarly

: big observation usually followed by another big,
or small by small



Correlation

2.3

= Correlation is a statistical measure of the relationship
between two different time series

11) Negative correlation
: behave as opposites

: big observation usually followed by small, or
small by big



Correlation

2.4

= Correlation is a statistical measure of the relationship
between two different time series

I11) No correlation

: behavior of one is unrelated to behavior of
other

Positive Negative No correlation



Autocorrelation

2.5

= Autocorrelation is a mathematical representation of
the degree of similarity between a given time series
and a lagged version of itself over successive time
intervals.

= |t's conceptually similar to the correlation between
two different time series, but autocorrelation uses
the same time series twice: once in its original form
and once lagged one or more time periods.



Autocorrelation

2.6

= For example, if it's rainy today, the data suggests that
it's more likely to rain tomorrow than if it's clear

today.

* When it comes to investing, a stock might have a
strong positive autocorrelation of returns, suggesting
that if it's "up” today, it's more likely to be up
tomorrow, too. Technical analysts can use
autocorrelation to measure how much influence past
prices have on its future price.



Autocorrelation

* An autocorrelation of +| represents a perfect
positive correlation (an increase seen in one time

series leads to a proportionate increase in the other
time series).

AUTOCORRELATION +1

\/M
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Autocorrelation

* On the other hand, an autocorrelation of -|
represents a perfect negative correlation (an increase
seen in one time series results in a proportionate
decrease in the other time series).

AUTOCORRELATION -1
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2.9

Autocorrelation

= Autocorrelation coefficient can range between +|
(very high positive correlation) and -1 (very high
negative correlation)

= /ero means no correlation

= Autocorrelation function shows the value of the
autocorrelation coefficient for different time lags k

* Lack of independence usually results in
autocorrelation



Measuring Autocorrelation
a

= A correlogram (also called Auto Correlation Function
ACF Plot or Autocorrelation plot) is a visual way to
show serial correlation in data that changes over time
(i.e. time series data).

= Autocorrelation plots are a commonly-used tool for
checking randomness in a data set. This randomness is
ascertained by computing autocorrelations of data
values at varying time lags. If random, such
autocorrelations should be near zero for any and all
time-lag separations. If non-random, then the
autocorrelations will be non-zero.

2.10



Definition of Autocorrelation
“

= Autocovariance Function :

r(k) = Cov(Xy, Xesk) = E[XeXeir] — EIX¢] - E[X¢4]

= Autocorrelation Function (Autocorrelation Coefficient ):
Cov(Xe, Xetk)
\/VCU"(Xt)VaT(XHk)

p(k) = Cor(Xe, Xeyr) =

211



ACF of samples of i.i.d. random variables

ACF

0O 5 10 20 30
Lag k

Correlogram of samples of i.i.d random variables
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Measuring Autocorrelation

ACF

O 8§ 410 20 30
Lagk

Correlogram of samples of not i.i.d random variables
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Autocorrelation

* |n fact, if the process consisted of i.i.d. RVs, we would
be done.

* However, most traffic has the property that its
measurements are not independent.

* lack of independence usually results in autocorrelation

2.14
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-

Autocorrelation Coefficient
. -
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__— negative correlation
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Long Range Dependence: Autocorrelation
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._——No observed
correlation at all
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Long Range Dependence: Autocorrelation
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No statistically significant
correlation beyond this lag
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Autocorrelation

" For most processes (e.g., Poisson, or compound
Poisson), the autocorrelation function drops to zero
very quickly (usually immediately, or exponentially
fast)

" For self-similar processes, the autocorrelation

function drops very slowly (i.e., hyperbolically)
toward zero, but may never reach zero

2.20
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How Does Autocorrelation Arise?

2.23

= Traffic is the superposition of flows

Client Request

Internet
- (TCP/1IP)

A

Server

Response
ON OFF
P1: «—» “«—»
P2:

P3:



Long-range-dependence

2.24

= A process with LRD has an autocorrelation function:

r(k) =~ kP as k — oo where 0 < 8 < 1,and Zr(k) — 00

* |n other words, the autocorrelation function decays
hyperbolically and is non- summable.

* For the conventional SRD (short-range dependence)
process, an autocorrelation function decays
exponentially.



Long-range-dependence(LRD)

= |tis often used to describe the tail-end behavior of
the autocorrelation function of a stationary time
series.

* |n traffic modeling, LRD is often used to describe the
aggregate traffic such as WAN (Wide Area Network),
whereas self-similarity is usually used in the context
of LAN (Local Area Network) or individual

application traffic.
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Non-Degenerate Autocorrelations

* For self-similar processes, the autocorrelation
function for the aggregated process is
indistinguishable from that of the original process

* [f autocorrelation coefficients match for all lags k,

then called “exactly self-similar”

* [f autocorrelation coefficients match only for large
lags k, then called “asymptotically self-similar”
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Non-Degenerate Autocorrelations
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Meaning of Aggregation

= Aggregation of a time series X(t) means smoothing the
time series by averaging the observations over non-
overlapping blocks of size m to get a new time series X'(t)

Non-Degenerate Autocorrelations — Aggregation
2.28
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Examples of aggregation

“

= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291..

Then the aggregated time series for M. = 5 is:

2.30



Examples of aggregation

ﬁ

= Suppose the original time series X(t) contains the
following (made up) values:

274125/0828469113357291..

The\the aggregated time series for M. = 5 is:
6.0

231



Examples of aggregation

ﬁ

= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291..

Then the aggrggated time series for Mm = 5 is:
6.0 44

2.32



Examples of aggregation

ﬁ

= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469 11335729 I|.

Then the aggregated time series fon M. = 5 is:

6.0 44 6.4 4.8 ...

2.33



Examples of aggregation

“

= Suppose the original time series X(t) contains the
following (made up) values:

27412508284(69113357291..

Then the\aggregated time series for m = 10 is:

5.2
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Examples of aggregation

ﬁ

= Suppose the original time series X(t) contains the
following (made up) values:

27412508284(6911335729 ..

Then the aggregated time se&ss form = 10 is:
5.2 5.6 ...

2.35
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R/S Plot

2.38

* The rescaled range is a statistical measure of the
variability of a time series introduced by the British
hydrologist Harold Edwin Hurst (1880—-1978).

* [ts purpose is to provide an assessment of how the
apparent variability of a series changes with the
length of the time-period being considered.

* Another way of testing for self-similarity, and
estimating the Hurst parameter



R/S Plot

= Plot the R/S statistic for different values of n, with a
log scale on each axis

* [f time series is self-similar, the resulting plot will
have a straight line shape with a slope H that is

greater than 0.5

= Called an R/S plot, or R/S pox diagram

2.39



R/S Plot

2.40

For almost all naturally occurring time series, the
rescaled adjusted range statistic (also called the R/S
statistic) for sample size n obeys the relationship

g | B L ow
S (n)

where R(n) = max(0, Wy,...,W,)) — min(0,,W,...,W,),

S2(n) is the sample variance,

and W, =2Xi—kX_n fork=1,2,...,n



R/S Plot

* For almost all naturally occurring time series, the
rescaled adjusted range statistic (also called the R/S
statistic) for sample size n obeys the relationship

R(n
E R(n) = nf
5(n)
H _
logE[S(n) =logcen™ = Hlogn + logc

So, H is slope.

241



An example of R/S statistic

= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291

* There are 20 data points in this example

2.42



An example of R/S statistic

= Suppose the original time series X(t) contains the
following (made up) values:

2

741250828469113357291

* There are 20 data points in this example

= For R/S analysis with n = |, you get 20 samples, each of

size |:

Block 1: X,,=2.0, W; =0, R(n) =0, S(n) =0

2.43



An example of R/S statistic

= Suppose the original time series X(t) contains the
following (made up) values:

2

/

41250828469113357291

* There are 20 data points in this example

= For R/S analysis with n = |, you get 20 samples, each of

size |:

Block 2: X,,=7.0, W; =0, R(n) =0,S(n) =0

2.44



An example of R/S statistic

= Suppose the original time series X(t) contains the
following (made up) values:

27

41250828469 113357291

* There are 20 data points in this example

= For R/S analysis with n = 2, you get 20 samples, each of

size 2:

Block 1:

X_n=4.5,W1=—2.5, W2=O,

R(n) =0—-(-2.5)=2.5,85(n) = 2.5,

2.45

R
(n) sy = 1.0



An example of R/S statistic

= Suppose the original time series X(t) contains the
following (made up) values:

27

4 12

50828469113357291

* There are 20 data points in this example

= For R/S analysis with n = 2, you get 20 samples, each of

size 2:

Block 2: X,,=8.0, W; =—-4.0, W, =0,
R(n) =0—(—4.0) = 4.0, S(n) = 4.0,

2.46

R
(n) sy = 1.0



An example of R/S statistic =¢}°o| = F7}

2.47

= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291

Block 1

= For R/S analysis with n=5, you get 4 samples, each of
size 4 :

Block 1: X_nz 6.0 / W1 = —40, WZ = —30,
W, =—50,W, =10 Ws =0, S(n) = 3.41,

Rm)=1.0—(-5.0)=6.0, "™/ =176



An example of R/S statistic

2.48

= Suppose the original time series X(t) contains the
following (made up) values:

274125(08284/6911335729 1

Block 1 Block 2

= For R/S analysis with n=5, you get 4 samples, each of
size 4 :

Block 2: X, = 4.4, W, = —4.4, W, = —0.8,
W3 = —32, W4 = 04‘, W5 = O, S(n) = 32,

R(n) =0.4—(-4.4) =4.8, "™/ =15



An example of R/S statistic

2.49

= Suppose the original time series X(t) contains the
following (made up) values:

274125[08284[6911335729 |

Block 1 Block 2 Block3

= For R/S analysis with n=5, you get 4 samples, each of
size 4 :

Block 3: X_nz 6.4, W1 = —0.4, WZ = 2.2,
W3 = 68, W4_ = 34‘, W5 = O, S(n) = 32,

R(n) =6.8—(-0.4) =7.8, "™/ = =24375



An example of R/S statistic

2.50

= Suppose the original time series X(t) contains the
following (made up) values:

274125[08284[6911335729 1

Block 1 Block 2 Block3 Block4

= For R/S analysis with n=5, you get 4 samples, each of
size 4 :

Block 4: X_n=4'8 ’ W1 = 0.2, Wz = 2.4,
W3 = —04‘, W4 = 38, W5 = O, S(n) = 32,

R(n) =3.8—(—0.4) = 4.2, ™/ - = 13125



An example of R/S statistic

= Suppose the original time series X(t) contains the
following (made up) values:

274125[08284[6911335729 1

Block 1 Block 2 Block3 Block4

= For R/S analysis with n=5, you get 4 samples, each of
size 4 :

R(n)| _
E lm] = 1.7525 = 5%

logs 1.7525 ~ 0.35 = H

251



The Hurst Effect

* For models with only short range dependence, H is
almost always 0.5

* For self-similar processes, 0.5 < H < 1.0

= This discrepancy is called the Hurst Effect,and H is
called the Hurst parameter

= Single parameter to characterize self-similar
processes

2.52



R/S statistic R(n)/S(n)
on a logarithmic scale

!

R/S Statistic

BlOCk Slze n Sogang University ICC Lab.
R/S Pox Diagram
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R/S Statistic

Sample size n
on a logarithmic scale

BlOCk Sl 7€ N Sogang University ICC Lab.
R/S Pox Diagram
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R/S Statistic

T~ Slope 0.5

B IOCk Size n Sogang University ICC Lab.
R/S Pox Diagram
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Slope 1.0

.

R/S Statistic

T~ Slope 0.5

BlOCk Slze n Sogang University ICC Lab.
R/S Pox Diagram
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Slope 1.0

R/S Statistic

i T~ Slope 0.5

B lOCk Sl 7€ n Sogang University ICC Lab.
R/S Pox Diagram
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, 8 Slope H
Nz Slope 1.0 (0.5 <H <[1.0)
s
= \ ) (Hurst parameter)
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« 10° Model result for the first experiment Autocorrelation
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Analysis of traffic characteristics(Self-similar)

<Results of Willinger and Paxon’s study>

= Studies have shown that the "long-term dependence
(LRD)" phenomenon, in which the correlation
between traffic decreases slowly, spreads to Internet
traffic through bottleneck sharing

2.60



Analysis of traffic characteristics(Self-similar)

= Relation of background traffic flowing through the
bottleneck section and TCP traffic passing through
the section:

N
TCP(t) = C —B(t),  s.t.B(t) = z B, ()
=1

= TCP(t) is TCP connection traffic that shares bottleneck
sections.

= ( is The total bandwidth of the bottleneck section

= B(t) is background traffic consisting of traffic generated by a
large number of connections

2.61



Analysis of traffic characteristics(Self-similar)

= TCP traffic follows the characteristics of background
traffic.

* [f background traffic B(t) shows self-similarity, TCP-
connected traffic also shows self-similarity and moves

self-similarity to other traffic

— The entire Internet traffic has self-similarity

2.62



